How to optimize cycles in your Lab Washer to minimize energy consumption?

Marcel Dion
Director of Marketing

I²SL, October 22nd, 2019
Denver
Learning Objectives

- Learn about basic principles of washing
- Understand how to adjust cycle parameters to minimize the use of energy
- Learn about common energy saving features
Applications

Cleaning and Drying of typical Laboratory Glassware and Plasticware
Basic Washing Principles

Parameters that can have an impact on cleaning efficacy?

TACCTS
- Temperature
- Action (mechanical)
- Chemistry
- Coverage
- Time
- Soil
Soil(s)

Understand the nature and condition of the soil(s)

- Organic
 - Fat, oils, waxes, blood, organic acids, sugars, proteins, etc...

- Inorganic
 - Minerals, carbonates, metal oxides, etc...
Temperature

• Temperature and soil (pre-wash phase)
 – (82C, 180F) for fats, oils, greases
 – (65C, 150F) for minerals
 – (21C, 70F) for proteins, glucoses

• Temperature and detergent (wash phase)
 – Typical range: 140-180F (60-82C)
 – Optimum: 150-160F (65-71C)

• Hot rinse reduces dry time
• Optimum temperature results in shorter cycle time
Mechanical Action

• Degree of turbulence

• Level of impingement

• Pressure, force applied on the surface of load items

• Flow
Chemistry

pH

- 0 is acidic
- 7 is neutral
- 14 is alkaline

Solubility vs pH

![Graph showing solubility vs pH for Aluminium Asprin](image)
Formulated cleaners

- Surfactants
 - Wetting effect
 - Ability to displace particles
 - Penetrate soil and surface irregularities
 - Emulsification
- Dispersants, prevent reaggregation of particles
- Chelating agents break down complex metals
Chemistry

- **Acidic detergent**
 - Minerals
 - Inorganic soils
 - Alkaline soils

- **Alkaline detergent**
 - Proteins
 - Organic soils
 - Acidic soils

- **Neutral detergents**
 - PH sensitive items

- **Concentration**
 - Based on quantity of soil
 - Condition of soil
 - Typical 1 - 2 oz/gal (8-16 ml/L)

- **Watch outs:**
 - No foaming
 - Material compatibility
 - Neutralization issues
Coverage

• Ensures that cleaning solution reaches all internal and external surfaces
 • Items with small opening (ex. Volumetric flasks)
 • Canulated items (ex. Pipettes, needles)
 • Hoses
• Requires sophisticated accessories
• Can be verified with a coverage test using Riboflavin and UV light
Coverage

Follow supplier’s recommendations for selection of accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Volumetric Flasks</th>
<th>Erlenmeyer Flasks</th>
<th>Graduated Cylinders</th>
<th>Beakers</th>
<th>Carboys and Bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-2 Spindle Header</td>
<td>500 mL to 2,000 mL</td>
<td>500 mL to 6,000 mL</td>
<td>500 mL to 2,000 mL</td>
<td>--</td>
<td>4 L to 20 L</td>
</tr>
<tr>
<td>M-5 Spindle Header</td>
<td>500 mL to 2,000 mL</td>
<td>500 mL to 6,000 mL</td>
<td>250 mL to 2,000 mL</td>
<td>--</td>
<td>500 mL to 20 L</td>
</tr>
<tr>
<td>M-8 Spindle Header</td>
<td>500 mL to 2,000 mL</td>
<td>500 mL to 1,500 mL</td>
<td>250 mL to 2,000 mL</td>
<td>--</td>
<td>500 mL to 4 L</td>
</tr>
<tr>
<td>M-18 Header</td>
<td>Spindle 10 mL to 250 mL</td>
<td>250 mL to 400 mL</td>
<td>50 mL to 100 mL</td>
<td>--</td>
<td>200 mL to 400 mL</td>
</tr>
<tr>
<td>M-32 Header</td>
<td>Spindle 100 mL to 250 mL</td>
<td>250 mL to 400 mL</td>
<td>50 mL to 100 mL</td>
<td>--</td>
<td>200 mL to 400 mL</td>
</tr>
</tbody>
</table>
Coverage

Follow supplier’s recommendations for positioning of components on accessories
Time

- Based on quantity of soil
- Condition of soil
- Temperature
- General rules
 - 1-2 min. pre-wash
 - 5-10 min. wash
 - 1 min. rinse(s)
Washing Functions

• How to adjust those parameters to obtain an efficient cleaning procedure?
• Follow a step by step process including:
 • Pre-wash
 • Wash
 • Rinse
 • Final rinse
 • Drying
Pre-Wash

– Remove gross soil
– Use lower quality water
– Enough time to saturate the soil
 • Typical 1 minute
– Temperature
 • Cold for proteins
 • Hot for others

Centrifuge
Wash

- Remove all soil from the surface
- Select temperature based on nature of soil
- Adjust time based on quantity and condition of the soil
 - Typical: 5-10 minutes
Rinse

- Remove detergent residues
- Can use lower temperature unless sanitization is required. High temperature increases cycle time
- Can be performed with lower quality water
- One or two rinses are typically sufficient
- 1-2 minutes maximum
Final Rinse

- Remove all remaining residues
- Usually performed at higher temperature to accelerate subsequent drying
- Use high quality water (Reversed Osmosis, Water for Injection)
- One or two rinses are typically sufficient
- Non-Recirculated rinses are recommended (single pass)
Drying

- Eliminate moisture on load, chamber, accessories and piping
- High temperature
 - Up to 240F (115C)
 - Or lower for heat sensitive items
- System shall force air inside components to accelerate drying
Energy Saving Features

- Laboratory Glassware Washers can use a huge amount of water, steam, electricity and chemicals
- Modern Washers can be equipped with various energy saving features
- Some of these features can be retrofitted on existing washers
Energy Saving

• Use the full capacity of the chamber
 – May require additional Loading Accessories
• « Smart Filling » technologies
• « Smart Drying » technologies
Energy Saving

Single Pass Final Rinses
- Reduces the number of rinses
- Increases productivity by shortening cycle time
Energy Saving

Exhaust Heat Recovery

- Recovers heat from exhaust to pre-heat incoming drying air
- Air coming out is cooler, so less water required for condenser
Energy Saving

Effluent Heat Recovery

• Heat from effluent is recovered and used to preheat the cold water used for the next treatment

• **No cold water is wasted** for effluent cooling (typical cycle)

• No need to supply Hot Water utility
 – Saving $$$ on installation and utilities
Conclusion

• Understanding basic principles of washing is necessary to optimize cycle parameters
 – Reduce energy consumption
 – Increase productivity
• Laboratory glassware washers can be equipped with systems that can significantly reduce energy consumption
QUESTIONS?
Marcel_dion@steris.com