Know Your Constraints: Proven, Safe Results of Lab Building Optimization

Presented by:

Chris Schmidt & Brad Newell

A Woman Business Enterprise (WBE)

Learning Objectives

- 1. Be able to identify and properly account for design constraints in existing lab building design and commissioning projects.
- 2. Understand the role a commissioning agent has in the design, construction, operation, verification, and training of staff in new construction or major renovation.
- 3. Obtain a greater understanding of lab ventilation equipment and control theory.
- 4. Understand potential pitfalls in RCx that can occur if constraints are not taken into account

RCx in Existing Labs

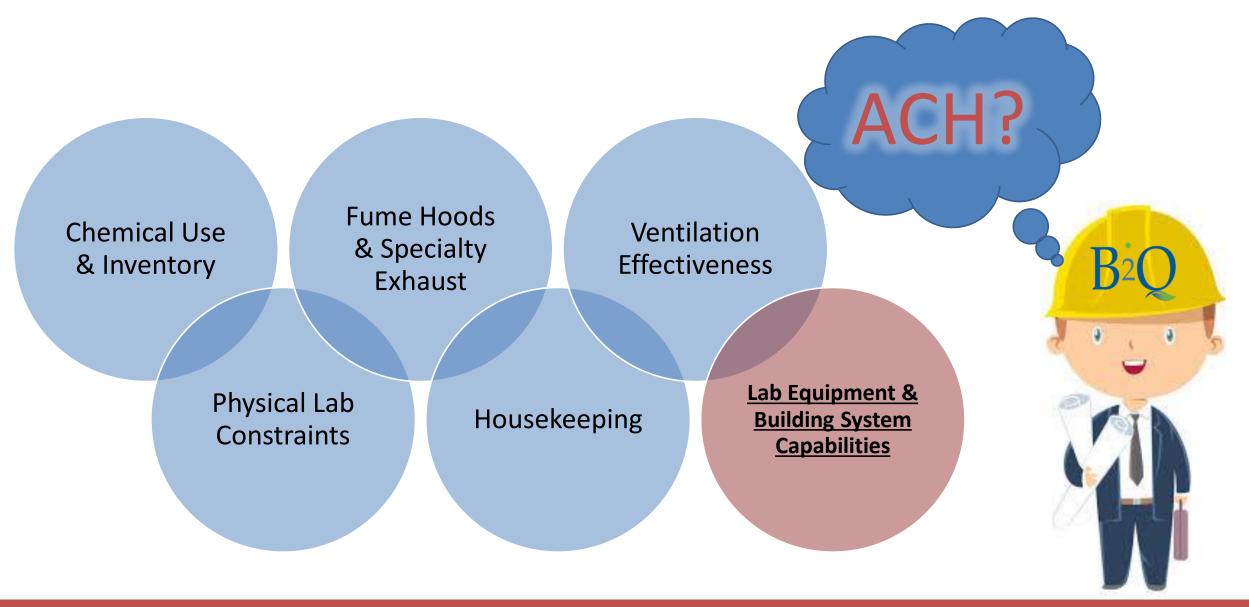
- Re/Retro Commissioning is a process that when executed properly, helps ensure lab building equipment and systems will meet current lab use and updated owner requirements WHILE prioritizing lab safety and energy conservation.
- Important!
 - <u>Lab use changes over time</u> there is often major differences between design/anticipated use and current use!
 - Code Changes
- Need to evaluate the current use of labs, examine existing equipment and ensure the labs and building operate to meet the current use.

Optimizing Ventilation for Current Use

Consult EH&S and appropriate stakeholders

• Determine minimum, safe ventilation

• Determine corresponding ventilation setpoints per EH&S recommendations.


• Evaluate lab system and equipment capabilities

Revise ventilation setpoints accordingly

• Implement, commission and verify new setpoints

Evaluate Energy Savings & **Potential Utility Incentives** \$\$\$

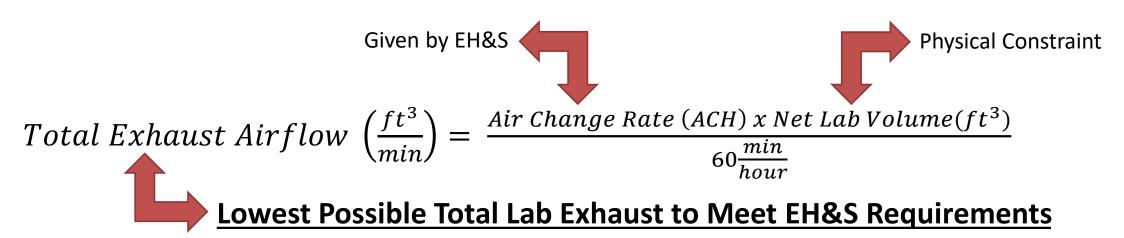
Ventilation Reduction – How Low Can You Go??

Chemical Usage Review

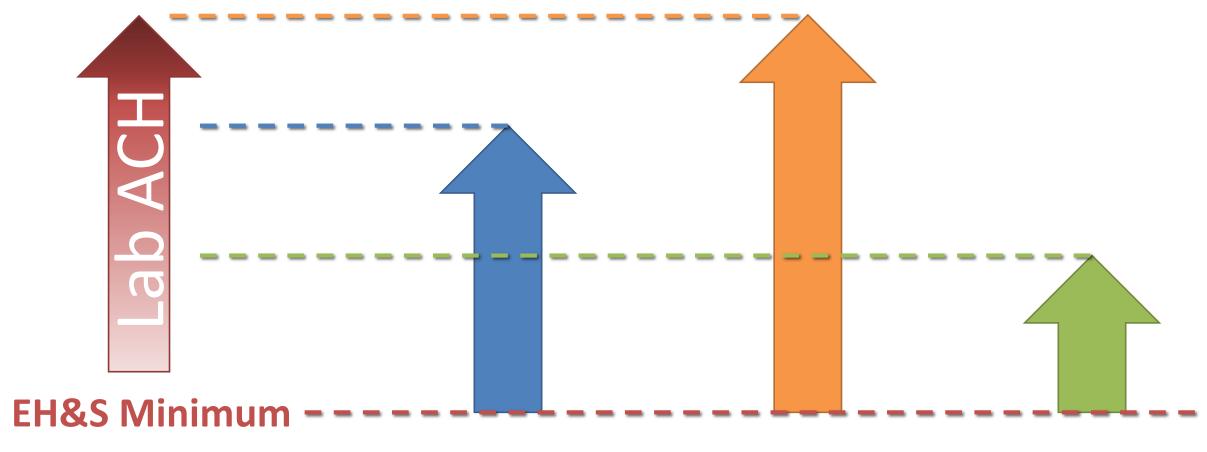
- Review chemicals in labs for:
 - Flammability
 - Toxicity
 - Odor

Ventilation Effectiveness Review Development of low flow areas, "dead zones" or diffuser layout concerns

EH&S Minimum ACH


This is the lowest ventilation obtainable for each lab!

 Cleanliness of the lab zone is examined to determine risk


Codes & Internal Standards

Calculating Exhaust from ACH

- Example Lab 1: EH&S Approved 6 ACH Occupied & 3 ACH Unoccupied
- Net Lab Volume 19,400 ft³
- Using Equation above: Exhaust Flow = 1940 cfm Occ. & 970 cfm Unocc.
- In this particular lab these flows are feasible by the equipment serving the lab. We'll see that this is not always the case!

Need to Evaluate System Capabilities

Exhaust Devices Supply Devices Makeup Air

EH&S Approved ACH Minimum

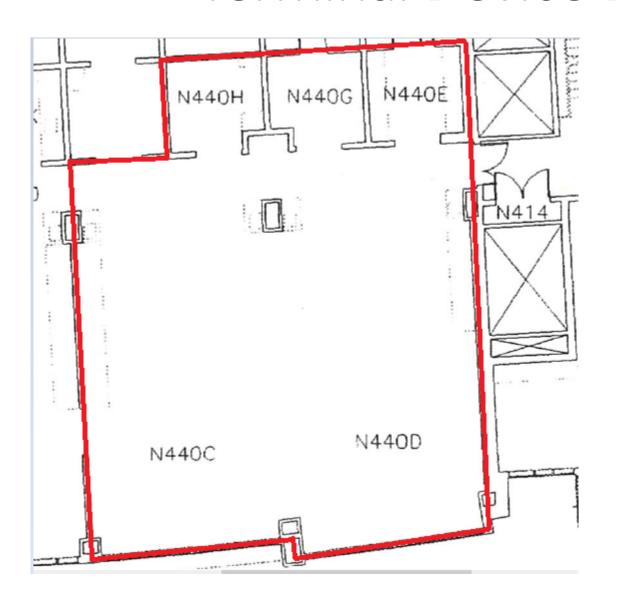
Makeup Air Limitations

ASHRAE 62.1 Ventilation Req. EACH LAB ZONE Room Volume & Physical Constraints

Fume Hoods & Other Exhaust Min. Ventilation is a Balance of Limiting Factors

Exhaust Device Minimum Supply Device Minimum

Terminal Device Driven Minimums


EXAMPLE OF SUPPLY DEVICE LIMITATIONS – SIMPLE, SMALL, LAB						
Room Volume	2240	ft ³				
EH&S Approved Unocc. Min	3	ACH				
Exhaust Flow @ 3 ACH	112	EFIVI				
Exhaust VAV Manufacturer Minimum	138	CFM				
EH&S Required Offset	-150	CFM				
Supply Flow @ 3 ACH	-38	CEM				
Supply VAV Manufacturer Minimum	75	CFM				
Actual Exhaust to comply with Supply and Exhaust VAV Minimums	225	CFM				
Resulting ACH @ Higher Flow	6	ACH – DOUBLE EH&S MIN!				

Limiting
Constraint – but
not the worst in
this lab!

Supply VAV is critical constraint!

Final setpoint satisfies supply & exhaust

Terminal Device Driven Minimums

- 21,000 ft³
- Approved for 6/3 ACH (Occ/Unocc)
- 4 General Exhaust Devices
- 2 Fume Hoods
- 1 Snorkel Exhaust
- 2 Supply VAVs
- Many factors in this lab zone!

Terminal Device Driven Minimums

Devices	Flows
Exhaust Flow To Achieve 3 ACH Supply Flow To Achieve 3 ACH (+75 offset)	972 CFM 1047 CFM
Supply VAV Manufacturer Minimum	660 CFM GOOD!
Fume Hood & Snorkel Minimum Total General Exhaust Min Total Minimum Exhaust	335 CFM 804 CFM 1138 CFM
Resulting ACH	3.5 ACH

Can't do anything about this!

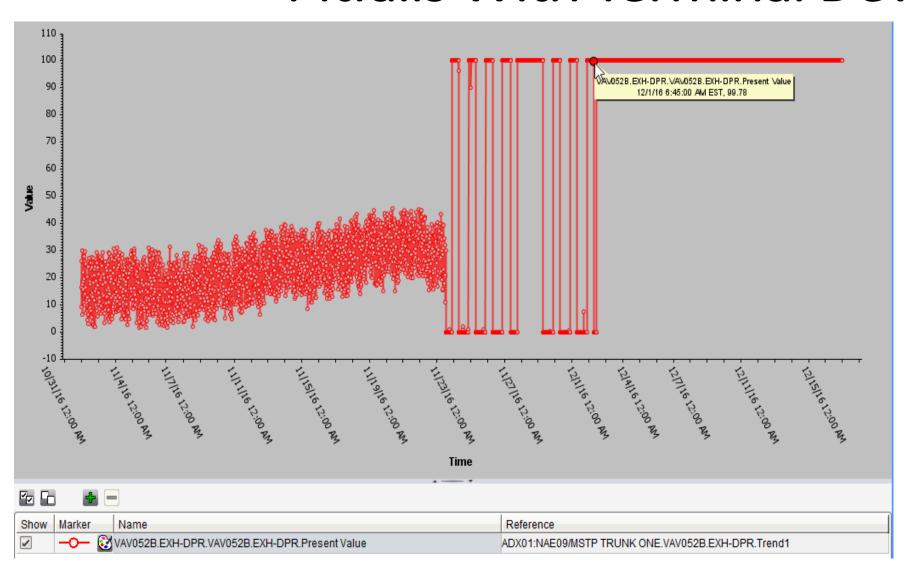
- **GEX 1: 12" VAV 330 CFM Min**
- GEX 2: 12" VAV 330 CFM Min
 - **GEX 3: 6" VAV 72 CFM Min**
- **GEX 4: 6" VAV 72 CFM Min**

General exhausts 1 & 2 are the constraint! 8" VAVs would be adequate for this application!

Don't Oversize Terminal Devices!

VAV Turndown

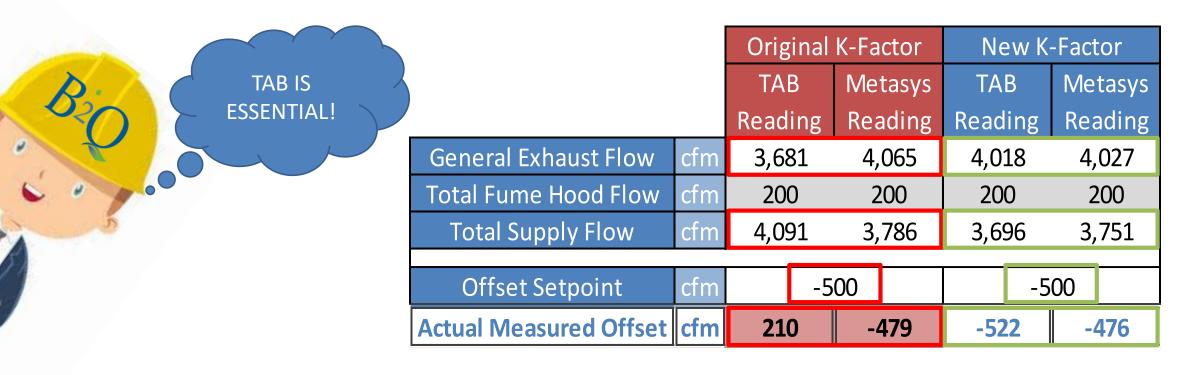
Air Valve Turndown


- Published = 10%-20%, avg. ~15%
- Reality = 15%-25% <u>at best</u>

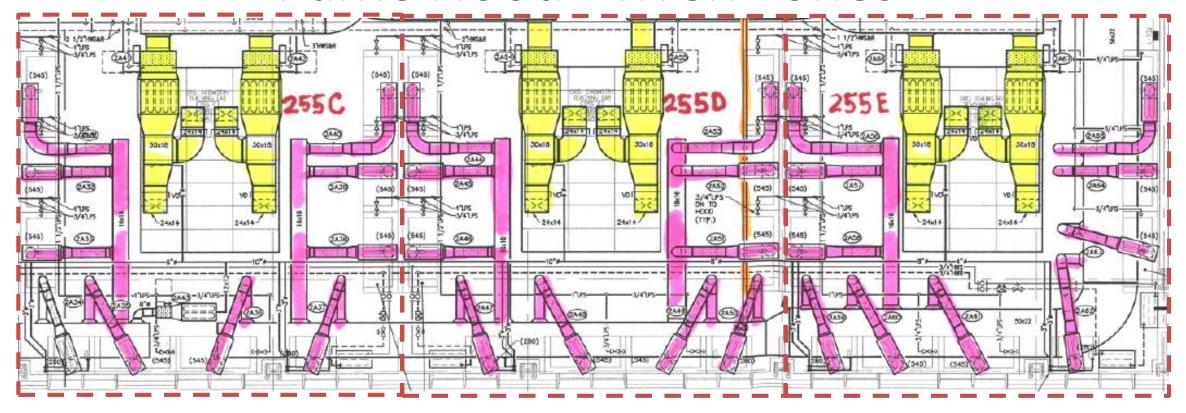
- Published = 5%-10%
- Reality = Generally as published depending on sizing and pressure drop

	VAV Box			AccuValve		Phoenix Air Valve				
Inlet Size	Published Mfr. Min	Device Max	Pub. Turn- down	Safe Turn- down	Published Mfr. Min	Device Max	Turn- down	Published Mfr. Min	Device Max	Turn- down
6	65	550	12%	15%-25%	30	315	10%			
8	125	1,100	11%	15%-25%	80	800	10%	35	700	5%
10	210	1,800	12%	15%-25%	120	1,300	9%	50	1,000	5%
12	300	2,600	12%	15%-25%	180	1,800	10%	90	1,500	6%
14	390	3,700	11%	15%-25%	250	2,750	9%	200	2,500	8%

 Consider these differences when designing new facilities – there are lasting cost implications to oversizing equipment

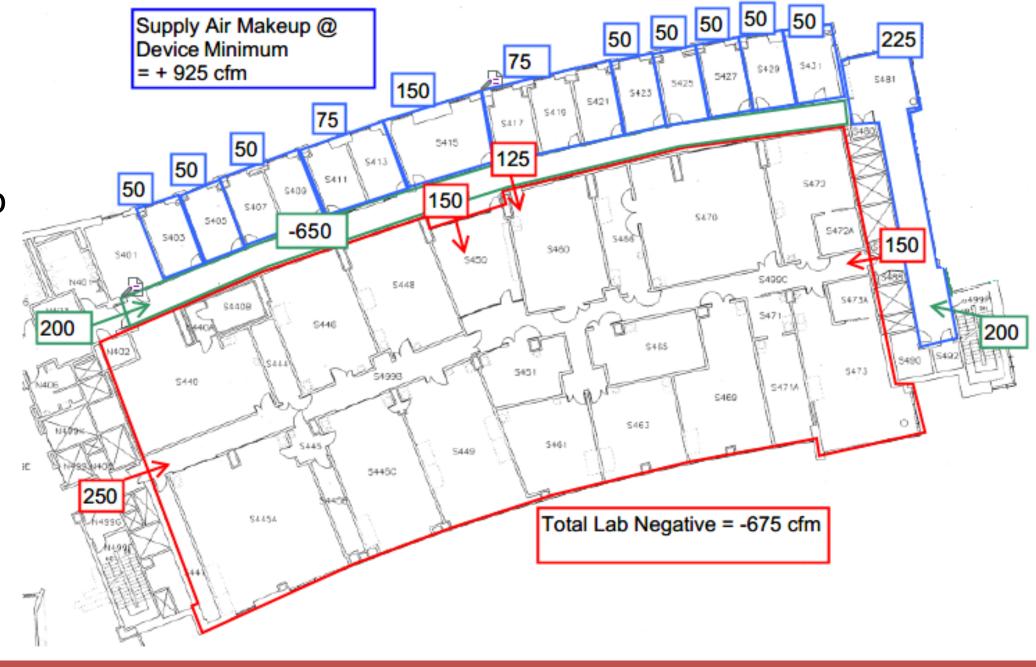

Pitfalls With Terminal Devices

- Trying to control a terminal device below it's manufacturer recommended minimum can cause severe hunting.
- Hunting VAV caused actuator to fail.
- Could cause lab pressurization & safety issues.


Pitfalls With Terminal Devices

 Flow measurement accuracy can suffer when terminal devices operate near their minimums and measurements can drift from original TAB calibration

 A K-Factor (or pickup gain) relates pressure velocity and area to airflow in VAVs (and other flow applications)


Fume Hood Driven Zones

- Each lab in this floor plan has 10 fume hoods
- Even with sashes closed flow is well above EH&S approved minimums!
- Thankfully no GEX in this zone but if there was, total lab exhaust would increase

Lab Devices aren't the only thing to Consider!

Non-lab
Makeup air
can impact
lab
ventilation.

With all these limiting factors – can you still have a successful RCx Lab Project?

- Integrated Sciences Building
 - 8 years old
 - 150,000 ft² (85,000 ft² of Lab Space)
 - 4,620,580 kWh Baseline
 - 29,000 MLbs Steam -Baseline
 - \$1,042,058 in Energy
 Annually Baseline
 - EUI: 275 kBtu/ft² –
 Baseline (2015)

- Engineering Lab II (ELab II)
 - 13 years old
 - 61,000 ft² (21,474 ft² of Lab Space)
 - 2,636,348 kWh Baseline
 - 15,096 MLbs Steam -Baseline
 - \$565,554 in Energy Annually Baseline
 - EUI: 359 kBtu/ft² –
 Baseline (2015)

- Life Science Labs North & South
 - 4/2 years old (N./S.)
 - 310,000 ft² (50% labs)
 - 7,432,504 kWh Baseline
 - 24,580 MLbs Steam -Baseline
 - \$1,234,850 in Energy Annually Baseline
 - EUI: 240 kBtu/ft² –
 Baseline (2016)
- Baseline Totals: 14.5 Million kWh | 68,500 mlbs steam | \$2.8 Annually

OF COURSE!

Building	Total Electric Energy Savings	Steam Energy Savings	Energy Cost Savings	Project Cost	Simple Payback
	kWh	Mlb	\$	\$	yrs.
ISB	1,851,862	10,738	\$399,946	\$590,968	1.5
Elab II	677,294	6,312	\$193,968	\$448,907	2.3
LSL North	900,000	1,340	\$116,800	\$502,000	4.3
LSL South - Predicted	469,000	2,860	\$104,100	\$259,174	2.5
Totals	3,898,156	21,250	\$814,814	\$1,801,049	2.2
% Due to Vent. Opt.	67%	44%			

 End result are buildings with labs that are, <u>SAFE</u>, operate in an efficient, sustainable manner and have ventilation that takes all factors into account

Concluding Thoughts

- Just because "Someone" EH&S, Consultant, Rep... says a low ACH is feasible doesn't mean the building and systems are capable of this performance
- When evaluating ventilation reductions:
 - Understand lab risk consult EH&S or CIH
 - Take capabilities of lab airflow devices into account
 - Take "whole floor" into consideration factors outside the lab can impact ventilation inside the lab
- Don't trust the BAS Contract a Testing, Adjusting and Balancing Contractor!

Questions?

A Woman Business Enterprise (WBE)

100 Burtt Rd. Ste. 212 Andover, MA 01810

Brad Newell – Project Manager bnewell@b2qassociates.com (603) 703-3932 (Cell) (978) 447-5604 (Office)

Andover, MA – B2Q Home Office Chris Schmidt – Principal cschmidt@b2qassociates.com (603) 247-1575 (Cell)

Saratoga Springs, NY Louisville, KY